Figures

Figure C4.6-1. Commercial harvest of weakfish on the Atlantic coast.

Figure C4.6-2. Proportion of annual commercial weakfish harvest by dominant states.
Figure C4.6-3. Proportion of annual coastwide commercial weakfish harvest by dominant gears.
Figure C4.6-4. Standardized commercial CPUE and effort from eight North Carolina fisheries. All CPUE = CPUE from all positive trips; “Targeted” = trips with greater than 150 lbs of weakfish.
Figure C4.6-4 (continued). Standardized commercial CPUE and effort from eight North Carolina fisheries. All CPUE = CPUE from all positive trips; “Targeted” = trips with greater than 150 lbs of weakfish.
Figure C4.6-5. Standardized commercial CPUE and effort from three Virginia fisheries. A) CPUE; B) Effort. GN 150+ = gillnet trips with 150 pounds or more of weakfish.
Figure C4.6-6. Standardized commercial CPUE and effort from Delaware’s gillnet fishery.

Figure C4.6-7. Standardized commercial CPUE and effort from the Potomac River pound net fishery.
Figure C4.6-8. Recreational catch (thousands), harvest numbers (thousands) and harvest weight (MT) of weakfish on the Atlantic coast.

Figure C4.6-9. Proportion of annual recreational weakfish harvest by dominant states.
Figure C4.6-10. Recreational discard losses assuming a 10% discard mortality rate.
Figure C4.6-11. Total weakfish removals. A) Harvest weight (metric tons) for the two principal sectors and all four sectors combined; B) Percent of total biomass removals by sector.
Figure C5.1-1. Comparison of state and federally reported landings on an annual basis for A) Delaware and B) Virginia.
Figure C5.1-2. Comparison of state and federally reported data by gear for A) Delaware and B) Virginia
Figure 6.1-1. Results of the NEFSC fall trawl survey. A) Age aggregated CPUE and CV in true survey year; B) Age specific CPUE progressed one year and age
Figure 6.1-2. Results of the New Jersey ocean trawl survey August cruise. A) Age aggregated PPT with 90% confidence intervals; B) Age specific PPT. Survey is not lagged, so all values are in the true survey year.
Figure 6.1-3. Results of the DNREC Delaware Bay 30-foot trawl survey. A) Age aggregated CPUE (ages 1+) and CV (ages 0+); B) Age specific CPUE. Survey is not lagged, so all values are in the true survey year.
Figure 6.1-4. Results of the SEAMAP trawl survey in North Carolina waters. A) Age aggregated CPUE and CV in true survey year; B) Age specific CPUE progressed one year and age.
Figure 6.1-5. Results of the NCDMF gillnet survey in Pamlico Sound. A) Age aggregated CPUE; B) Age specific CPUE. Survey is not lagged, so all values are in the true survey year.
Figure C6.2-1. Massachusetts and Rhode Island YOY indices of abundance.

Figure C6.2-2. Connecticut YOY and 1+ indices of abundance.
Figure C6.2-3. New York and Delaware YOY indices of abundance.

Figure C6.2-4. Maryland and Virginia YOY indices of abundance.
Figure C6.2-5. North Carolina YOY and 1+ indices of abundance.
Figure C6.4-1. Fishery dependent (MRFSS) indices of abundance. A) Age aggregated (1+) catch per trip in true fishing year; B) Age specific catch per trip progressed forward one year and age.
Figure C7.2-1. Summary results of preliminary ADAPT VPA runs. Tuning indices used are as follows: Base = All available aged and young of year indices; FI+YOY = All aged fishery independent indices plus all YOY indices; FI only = All aged fishery independent indices only; FD+YOY = All fishery dependent aged indices plus all YOY indices; FD only = Fishery dependent indices only.
Figure C7.2-2. Retrospective patterns in fishing mortality (unweighted average age 4-5) from preliminary ADAPT VPA runs. Tuning indices used are as follows: Base = All available aged and young of year indices; FI+YOY = All aged fishery independent indices plus all YOY indices; FI only = All aged fishery independent indices only; FD+YOY = All fishery dependent aged indices plus all YOY indices; FD only = Fishery dependent indices only.
Figure C7.2-3. Retrospective patterns in spawning stock biomass from preliminary ADAPT VPA runs. Tuning indices used are as follows: Base = All available aged and young of year indices; FI+Y0Y = All aged fishery independent indices plus all YOY indices; FI only = All aged fishery independent indices only; FD+Y0Y = All fishery dependent aged indices plus all YOY indices; FD only = Fishery dependent indices only.
Figure C7.2-4. Summary results of ADAPT VPA run using indices selected from scored criteria (Scores) compared to Base and Fishery Dependent only runs. A) Unweighted average fishing mortality, ages 4-5; B) Spawning stock biomass. Indices used in the Scores run include NEFSC ages 1-2, DE 30 foot trawl age 1, NC gillnet age 1, SEAMAP ages 1-6+, and RI, CT, NY, DE, MD, and NC YOY indices.
Figure C7.2-5. Retrospective results of ADAPT VPA run using indices selected from scored criteria. A) Unweighted average fishing mortality, ages 4-5; B) Spawning stock biomass. Patterns are more severe (longer and greater magnitude) than those presented in Figures C7.2-2 and C7.2-3. Notice the difference in scale between 7.2-5B and 7.2-3.
Figure C7.2-6. Comparison of ADAPT VPA results using standardized and non-standardized tuning indices for all age fishery independent surveys and all YOY surveys. A) Unweighted average fishing mortality, ages 4-5; B) Spawning stock biomass.
Figure C7.2-7. Comparison of typical retrospective pattern, expressed as the ratio of parameter estimates in terminal year 2004 relative to terminal year 2007, using standardized and non-standardized tuning indices for all aged fishery independent surveys and all YOY surveys. A) Unweighted average fishing mortality, ages 4-5; B) Spawning stock biomass.
Figure C7.2-8. Comparison of ADAPT VPA results for the last 10 years using tuning indices from individual surveys. A) Unweighted average fishing mortality, ages 4-5; B) Spawning stock biomass.
Figure C7.3-1. Summarized parameter estimates from the preferred ADAPT VPA run. A) Fishing mortality; B) Biomass; C) Abundance.
Figure C7.3-2. Retrospective results for the preferred ADAPT VPA run. A) Unweighted average fishing mortality, ages 4-5; B) Spawning stock biomass; C) Total January 1 stock abundance; D) Recruitment to age 1.
Figure C7.3-3. Survey residuals from the preferred ADAPT VPA run using Delaware and New Jersey trawl survey indices, North Carolina gillnet survey indices, and fishery dependent indices.
Figure C7.3-3 (continued). Survey residuals from the preferred ADAPT VPA run using Delaware and New Jersey trawl survey indices, North Carolina gillnet survey indices, and fishery dependent indices.
Figure C7.3-3 (continued). Survey residuals from the preferred ADAPT VPA run using Delaware and New Jersey trawl survey indices, North Carolina gillnet survey indices, and fishery dependent indices.
Figure C7.3-3 (continued). Survey residuals from the preferred ADAPT VPA run using Delaware and New Jersey trawl survey indices, North Carolina gillnet survey indices, and fishery dependent indices.
Figure C7.3-4. Frequency distributions of parameter estimates for a range of terminal years based on 500 bootstrap iterations per year. A) Unweighted average fishing mortality, ages 4-5; B) Spawning stock biomass.
Figure C7.3-5. Retrospective corrected parameter estimates from ADAPT VPA. A) Unweighted average fishing mortality, ages 4-5; B) Spawning stock biomass; C) Total January 1 stock abundance; D) Recruitment to age 1.
Figure C7.3-6. Comparison of results from the preferred ADAPT run and preliminary ASAP model runs. A) Biomass weighted fishing mortality; B) Spawning stock biomass.
Figure C8.2-1. Plot of scaled New Jersey (ANJN), Delaware (ADEN) and recreational CPUE (RelNt) weakfish indices in number, 1981-2007.

Figure C8.2-2. Plot of scaled New Jersey (ANJW), Delaware (ADEW) and recreational CPUE (RelWt) weakfish indices in weight, 1981-2007.
Figure C8.3-1. Plot of ages 1+ fishing mortality (FW, FN) on weakfish and fishing mortality due to discards (Fdisw, Fdisn).

Figure C8.3-2. Plot of ages 1+ weakfish biomass (BIOW, mt), surplus production (SURP, mt) and coast-wide landings (CATCHW, mt), 1981-2008.
Figure C8.3-3. Relationship between weakfish surplus production and striped bass and spiny dogfish relative abundance, 1981-2007.

Figure C8.3-4. Relationship between weakfish surplus production and blended predation from striped bass and spiny dogfish, 1981-2008.
Figure C8.4-1. Comparison of biomass weighted Z from ADAPT and biomass weighted F from relative F calculations to indicate the expected trend in natural mortality.
Figure C9.3-1. Plot of relative juvenile abundance of weakfish based on the average of nine juvenile indices, 1981-2007.

Figure C9.3-2. Relationship between weakfish juvenile mortality ($z0$) and average predator abundance (T_{pred}) based on striped bass and spiny dogfish, 1981-2007.
Figure C9.3-3. Anamalous residual pattern from Gompertz External model for weakfish without predation, 1981-2008.
Figure C9.3-4. Residual pattern from Gompertz model for weakfish with blended dogfish and striped bass predation effects, 1981-2008.

Figure C9.3-5. Ricker stock-recruitment fit to average coast-wide recruitment and weakfish biomass.
Figure C9.3-6. Serial correlation of residuals for the Ricker S-R model for weakfish without predation, 1981-2008.
Figure C9.3-7. Residual plot for the Ricker S-R model with striped bass and spiny dogfish predation, 1981-2007.

Figure C9.3-8. Residual plot for discrete Gompertz Production Model on weakfish without predation, 1981-2008.
Figure C9.3-9. Residual plot for Steele-Henderson model for weakfish with predation from spiny dogfish and striped bass, 1981-2008.

Figure C9.3-10. Plot of observed weakfish biomass and predicted biomass from the Steele-Henderson Model.
Figure C9.3-11. Plot of predation mortality (MP), total fishing mortality (FW) and discard fishing mortality.

Figure C9.3-12. Contribution of predation losses (DT) to total harvest (HARVW) and discards (DISCARDS).
Figure C9.3-13. Relationship between ages 1+ biomass weighted F on weakfish and equilibrium FMSY from 1981 to 2008.

Figure C9.3-14. Relationship between weakfish biomass (MT) and equilibrium BMSY from 1981-2008.
Figure C10.3-1. The Atlantic Coast of the United States. Prominent states and locations are listed. States from FL to MA participate in weakfish management. (Apologies to Canada)
Figure C10.4-1. Standardized indices (Z+2) from 1981-2003 assessment: NJ, MRFSS, and DE.

Figure C10.4-2. Proportion of trawls with weakfish based exploitable biomass indices based on August or October rounds of the NJ survey. P = proportion of trawls with weakfish; MWT = mean weight of all weakfish; and E = exploitable fraction of total trawl biomass.
Figure C10.4-3. Striped bass biomass estimated from SCAM and known biomass production model. Square indicates estimate for 1981.

Figure C10.4-4. Biomass of ages 1+ Atlantic menhaden estimated from forward projection (FP) and predicted from categorical regression. Square indicates estimate for 2006.
Figure C10.5-1. Observed and estimated indices. Indices have been z-transformed to the 1990-2006 time series and had 2 added to eliminate negative values.

Figure C10.5-2. Residuals of the GDR versus year.
Figure C10.5-3. Estimates of biomass / unfished stock biomass (B_t / K) for sensitivity runs with time-blocks removed from the beginning or B_{1981} constrained to be less than K. Start of time-series is indicated by year in legend.

Figure C10.5-4. Estimates of Z_t / Z_{msy} for sensitivity runs with time-blocks removed from the beginning or B_0 constrained to be less than K. Start of time-series is indicated by year in legend.
Figure C10.5-5. Estimates of \(\frac{F_t}{Z_{msy}} \) for sensitivity runs with time-blocks removed from the beginning or \(B_0 \) constrained to be less than \(K \). Start of time-series is indicated by year in legend.

Figure C10.5-6. Estimates of biomass / unfished stock biomass (\(B/K \)) for sensitivity runs with time-blocks removed from the end of the time series.
Figure C10.5-7. Estimates of biomass for sensitivity runs with different mean weights applied to recreational discards in the MRFSS index and fishery losses.

Figure C10.5-8. Trends in estimates of weakfish biomass and losses due to fisheries and striped bass predation-competition. Note separate axes for biomass and harvest or striped bass related losses.
Figure C10.5-9. Jackknife estimates of weakfish biomass 90% confidence intervals.

Figure C10.5-10. Bootstrapped estimates (N = 500) of biomass 90% confidence intervals.
Figure C10.5-11. Jackknife estimates of 90% confidence intervals of weakfish biomass lost to striped bass.

Figure C10.5-12. Bootstrapped estimates (N = 500) of 90% confidence intervals of weakfish biomass lost to striped bass.
Figure C10.5-13. Estimates of F and M_p and Z_{msy}.

Figure C10.5-14. Estimates of F, equilibrium F_{msy}, or non-equilibrium F_{psy} (= F_{msy} - M_p).
Figure C10.5-15. Biomass, surplus production (less striped bass related losses), and production.

Figure C10.5-16. Ratios of biomass to unfished stock size (B/K) and fishing mortality (F) to total mortality (Z = F + Mpt).
Figure C10.5-17. F estimated by the GDR model and relative F.

Figure C10.5-18. Trends in log_e-transformed catchability for the three exploitable biomass indices. Mean is for the all indices combined.
Figure C10.5-19. Jackknife estimates of the 90% confidence interval of F.

Figure C10.5-20. Bootstrap (N = 500) estimates of the 90% confidence interval of F.
Figure C10.5-21. Jackknife estimates of the 90% confidence interval of M_p.

Figure C10.5-22. Bootstrap ($N = 500$) estimates of the 90% confidence interval of M_p.
Figure C10.5-23. Ratio of menhaden to striped bass and estimates of weakfish loss per striped bass (\(D_t / P_t\); both based on biomass).

Figure C10.5-24. Weakfish loss per striped bass (biomass) versus weakfish biomass. Note shift in functional response between 1983-1993 and 1997-2006.
Figure C10.6-1. Ratio of ages 1+ menhaden biomass to ages 2+ striped bass biomass derived from coastal stock assessments and from Chesapeake Bay indices during 1959-2006.

Figure C10.6-2. Chesapeake Bay menhaden to striped bass ratio index, weakfish commercial harvest, and DE PSD Q+ indices during 1959-2006.
Figure C10.7-1. Comparison of model estimates of weakfish killed by striped bass or as extra bycatch/unreported harvest (starts in 1996) and discard estimates.

Figure C10.8-1. Commercial landings of weakfish during 1929-2006 and biomass during 1983-2006. Landings for 1929-1950 were estimated from Joseph (1972; Figure 4).
Figure C11.2-1. Relation between mean stock biomass, total removals, and fishing mortality (unweighted average, ages 4-5). The dashed vertical line indicates the year weakfish abundance began to decline in the absence of increased removals.

Figure C11.2-2. Comparison of fishing mortality rates calculated by ADAPT VPA and relative F calculations. Fishing mortality expressed as biomass weighted F on ages 1+.
Figure C11.2-3. Comparison of natural mortality as a result of predation from the full Steele-Henderson model (M_SH) with M calculated as Z_{VPA} – F_{rel}.
Figure C11.3-1. Relation of Atlantic Multidecadal Oscillation (AMO) to reported weakfish commercial landings. A) NMFS landings only; B) Joseph (1972) plus NMFS landings
Figure C11.3-2. Relationship between the prevalence of empty stomachs (3 year average) observed in weakfish from the NEFSC food habits database and biomass weighted Z (ages 1-5) estimated by ADAPT.

Figure C11.3-3. Comparison of age-specific weakfish diets (by weight) in Chesapeake during 1990-1992 and 2002-2003. Data for 1990-1992 were from Hartman and Brandt (1995) and data for 2002-2003 were provided by R. Latour (VIMS).
Figure C12.1-1. Weakfish stock status relative to equilibrium Thompson Bell reference points. A) Fishing mortality; B) Spawning stock biomass.
Figure C12.2-1. Weakfish stock status relative to non-equilibrium fishing mortality reference points calculated using the Steele-Henderson model.
Figure C13.1-1. Biomass projections under varying scenarios of fishing and natural mortality. Projections are calculated relative to ADAPT VPA terminal year estimates. A) Harvest moratorium; B) F = 0.25.
Figure C13.2-1. Effects of a simulated moratorium to harvest (F=0) in 2009 on rebuilding future weakfish TSSB under scenario #1, fixed M=0.25, approximate BMSY is 110.
Figure C13.2-2. Effects of a simulated moratorium to harvest (F=0) in 2009 on rebuilding future weakfish TSSB under scenario #2, M rises from 0.25 to 0.65. The projection is based on the assumption that M = 0.25 from 1981-1998, followed by a rise to M=0.65 thereafter. All values in the figure, including SSB20% have been scaled, so they are indicative of relative trends in biomass in relation to SSB20%, and not absolute biomass. SSB20% was estimated assuming constant natural mortality of M = 0.25. Projections were conducted based on results of the Steele-Henderson model described in section C9.0 of the stock assessment report.
Figure C13.2-3. Effects of a simulated moratorium to harvest (F=0) in 2009 on rebuilding future weakfish TSSB under scenario #3, M rises to 0.25 to 1.0, approximate BMSY is 110.