A. Butterfish

1. Characterize the commercial catch including landings, effort and discards by gear type. Describe the magnitude of uncertainty in these sources of data.

2. Characterize the survey data that are being used in the assessment. Describe the magnitude of uncertainty in these sources of data.

3. Characterize oceanographic and habitat data as it pertains to butterfish distribution and availability. If possible, integrate the results into the stock assessment (TOR-5).

4. Evaluate consumptive removals of butterfish by its predators. If possible, integrate results into the stock assessment (TOR-5).

5. Use assessment models to estimate annual fishing mortality, recruitment and stock biomass (both total and spawning stock) for the time series, and estimate their uncertainty. Include a comparison with previous assessment results and previous projections.

6. State the existing stock status definitions for “overfished” and “overfishing”. Given that the stock status is currently unknown, update or redefine biological reference points (BRPs; point estimates for \(B_{MSY} \), \(B_{THRESHOLD} \), \(F_{MSY} \) and MSY, or their proxies) and provide estimates of their uncertainty. Consider effects of environmental factors on stability of reference points and implications for stock status.

7. Evaluate stock status with respect to a newly proposed model and with respect to “new” BRPs and their estimates (from TOR-6). Evaluate whether the stock is rebuilt.

8. Develop approaches and apply them to conduct stock projections and to compute the statistical distribution (e.g., probability density function) of the OFL (overfishing level) and candidate ABCs (Acceptable Biological Catch; see Appendix to the SAW TORs).
 a. Provide numerical annual projections (2 years). Each projection should estimate and report annual probabilities of exceeding threshold BRPs for \(F \), and probabilities of falling below threshold BRPs for biomass. Use a sensitivity analysis approach in which a range of assumptions about the most important uncertainties in the assessment are considered (e.g., terminal year abundance, variability in recruitment). Comment on which projections seem most realistic.
 b. Describe this stock’s vulnerability (see “Appendix to the SAW TORs”) to becoming overfished, and how this could affect the choice of ABC.

9. Review, evaluate and report on the status of the SARC and Working Group research recommendations listed in most recent SARC reviewed assessment and review panel reports. Identify new research recommendations.
B. Tilefish

1. Estimate catch from all sources including landings and discards. Describe the spatial and temporal distribution of landings, discards, and fishing effort. Characterize the magnitude of uncertainty in these sources of data.

2. Characterize commercial LPUE as a measure of relative abundance. Consider the utility of recreational data for this purpose. Characterize the uncertainty and any bias in these sources of data.

3. For the depth zone occupied by tilefish, examine the relationship between bottom temperature, tilefish distribution and thermal tolerance.

4. Use assessment models to estimate annual fishing mortality and stock size for the time series, and estimate their uncertainty. Include a historical retrospective to allow a comparison with previous assessment results.

5. State the existing stock status definitions for “overfished” and “overfishing”. Then update or redefine biological reference points (BRPs; point estimates for B_{MSY}, $B_{THRESHOLD}$, F_{MSY} and MSY or for their proxies) and provide estimates of their uncertainty. If analytic model-based estimates are unavailable, consider recommending alternative measurable proxies for BRPs. Comment on the scientific adequacy of existing BRPs and the “new” (i.e., updated, redefined, or alternative) BRPs.

6. Evaluate stock status with respect to the existing ASPIC model (from previous peer reviewed accepted assessment) and with respect to a new model developed for this peer review. In both cases, evaluate whether the stock is rebuilt.
 a. When working with the existing model, update it with new data and evaluate stock status (overfished and overfishing) with respect to the existing BRP estimates.
 b. Then use the newly proposed model and evaluate stock status with respect to “new” BRPs and their estimates (from TOR-4).

7. Develop approaches and apply them to conduct stock projections and to compute the statistical distribution (e.g., probability density function) of the OFL (overfishing level) and candidate ABCs (Acceptable Biological Catch; see Appendix to the SAW TORs).
 a. Provide numerical annual projections (2-3 years). Each projection should estimate and report annual probabilities of exceeding threshold BRPs for F, and probabilities of falling below threshold BRPs for biomass. Use a sensitivity analysis approach in which a range of assumptions about the most important uncertainties in the assessment are considered (e.g., terminal year abundance, variability in recruitment).
 b. Comment on which projections seem most realistic. Consider the major uncertainties in the assessment as well as sensitivity of the projections to various assumptions.
 c. Describe this stock’s vulnerability (see “Appendix to the SAW TORs”) to becoming overfished, and how this could affect the choice of ABC.

8. Review, evaluate and report on the status of the SARC and Working Group research recommendations listed in most recent SARC reviewed assessment and review panel reports. Identify new research recommendations.
C. Northern shrimp

1. Present the Gulf of Maine northern shrimp landings, discards, effort, and fishery-independent data used in the assessment. Characterize the precision and accuracy of the data and justify inclusion or elimination of data sources.

2. Estimate population parameters (fishing mortality, biomass, and abundance) using assessment models. Evaluate model performance and stability through sensitivity analyses and retrospective analysis, including alternative natural mortality (M) scenarios. Include consideration of environmental effects where possible. Discuss the effects of data strengths and weaknesses on model results and performance.

3. Update or redefine biological reference points (BRPs; point estimates or proxies for \(B_{MSY} \), \(SSB_{MSY} \), \(F_{MSY} \), MSY). Evaluate stock status based on BRPs.

5. Review the methods used to calculate the annual target catch and characterize uncertainty of target catch estimates.

6. Develop detailed short and long-term prioritized lists of recommendations for future research, data collection, and assessment methodology. Highlight improvements to be made before the next benchmark assessment.

7. Based on the biology of species, and potential scientific advances, comment on the appropriate timing of the next benchmark assessment and intermediate updates.
Appendix to the SAW Assessment TORs:

Clarification of Terms used in the SAW Terms of Reference

Acceptable biological catch (ABC) is a level of a stock or stock complex’s annual catch that accounts for the scientific uncertainty in the estimate of [overfishing limit] OFL and any other scientific uncertainty…” (p. 3208) [In other words, OFL ≥ ABC.]

ABC for overfished stocks. For overfished stocks and stock complexes, a rebuilding ABC must be set to reflect the annual catch that is consistent with the schedule of fishing mortality rates in the rebuilding plan. (p. 3209)

NMFS expects that in most cases ABC will be reduced from OFL to reduce the probability that overfishing might occur in a year. (p. 3180)

ABC refers to a level of “catch” that is “acceptable” given the “biological” characteristics of the stock or stock complex. As such, [optimal yield] OY does not equate with ABC. The specification of OY is required to consider a variety of factors, including social and economic factors, and the protection of marine ecosystems, which are not part of the ABC concept. (p. 3189)

“Vulnerability. A stock’s vulnerability is a combination of its productivity, which depends upon its life history characteristics, and its susceptibility to the fishery. Productivity refers to the capacity of the stock to produce MSY and to recover if the population is depleted, and susceptibility is the potential for the stock to be impacted by the fishery, which includes direct captures, as well as indirect impacts to the fishery (e.g., loss of habitat quality).” (p. 3205)

Rules of Engagement among members of a SAW Assessment Working Group:

Anyone participating in SAW assessment working group meetings that will be running or presenting results from an assessment model is expected to supply the source code, a compiled executable, an input file with the proposed configuration, and a detailed model description in advance of the model meeting. Source code for NOAA Toolbox programs is available on request. These measures allow transparency and a fair evaluation of differences that emerge between models.