C. GOM Winter Flounder Figures

Figure C1. Statistical areas used to define winter flounder stocks. The Gulf of Maine stock includes area 511-515.
Figure C2. Commercial landings by gear 1964-2010.
Figure C3. Commercial landings by state (top) and statistical area (bottom) 1964-2010.
Figure C4. Commercial landings by quarter (top) and market category (bottom) 1964-2010.
Figure C5 Recreational landings in numbers and metric tons for Gulf of Maine winter flounder. B2 catch in numbers is also shown.
Figure C6. Expanded landing length distribution using port sampling data.
Figure C6. Cont.
Figure C6. Cont.
Figure C7. Expanded landing length distribution using observer data.
Figure C7. Cont.
Figure C7. Cont.
Figure C8. Gulf of Maine winter flounder composition of the catch by numbers and weight.
Figure C9. Gulf of Maine winter flounder bubble plot of the catch at age.
Figure C10. Gulf of Maine winter flounder mean catch weights at age (kg).
Figure C11. NEFSC spring survey stratified mean numbers and mean weight (kg) per tow for Gulf of Maine winter flounder. Trawl door conversion factors are used where appropriate. Dotted lines are unconverted door indices. Bigelow aggregate (red dots) and length based conversion (blue squares) are also shown.
Figure C12. NEFSC fall survey stratified mean numbers and mean weight (kg) per tow for Gulf of Maine winter flounder. Trawl door conversion factors are use where appropriate. Dotted lines are unconverted door indices. Bigelow aggregate (red dots) and length based conversion (blue squares) are also shown. The 2010 index did not have Cape Cod Bay strata sampled.
Figure C13. Massachusetts Division of Marine Fisheries (MDMF) spring survey stratified mean numbers and mean weight (kg) per tow for Gulf of Maine winter flounder.
Figure C14. Massachusetts Division of Marine Fisheries (MDMF) fall survey stratified mean numbers and mean weight (kg) per tow for Gulf of Maine winter flounder.
Figure C15. All four survey stratified mean numbers and mean weight (kg) per tow trends for Gulf of Maine winter flounder.
Figure C16. Estimated Length based calibration coefficients for Gulf of Maine winter flounder.
Figure C17. Spring raw and converted survey length distributions in 2009 and 2010. Albatross distributions are shown for 2008 and 2009 for comparison. Stratified converted length distributions are shown on the right.
Figure C18. Fall raw and converted survey length distributions in 2009 and 2010. Albatross distributions are shown for 2008 and 2009 for comparison. Stratified converted length distributions are shown on the right.
Figure C19. Spring and Fall MENH bottom trawl survey winter flounder abundance indices.
Figure C20. Spring MENH survey length distributions for Gulf of Maine winter flounder.
Figure C21. Fall MENH survey length distributions for Gulf of Maine winter flounder.
Figure C22. Entrainment monitoring of winter flounder larvae at the Pilgrim Nuclear power plant in Plymouth Massachusetts from 1975 to 2009.
Figure C23. MDMF bottom trawl survey tracking of the 1998 yearclass in the Gulf of Maine winter flounder catch per tow at length (cm) distributions.
Figure C24. NEFSC bottom trawl survey tracking of the 1998 yearclass in the Gulf of Maine winter flounder catch per tow at length (cm) distributions.
Figure C25. MDMF bottom trawl survey tracking of age modes in the catch per tow at length (cm) distributions from the spring and fall surveys for Gulf of Maine winter flounder.
Figure C26. NEFSC Spring indices of abundance by age.
Figure C27. NEFSC Fall indices of abundance by age.
Figure C28. MDMF spring indices of abundance by age.
Figure C29. Stratified number per tow indices greater than and less than 30 cm from the Spring and Fall MDMF surveys by depth category (shallow and deep).
Figure C30. Spring NEFSC survey weight per tow by strata indices.
Figure C31. Spring NEFSC survey weight per tow by strata indices.
Figure C32. Indices at age from the spring and fall NEFSC and MDMF surveys.
Figure C33. Aggregate and length based converted indices at age from the spring and fall NEFSC surveys.
Figure C34. Mean lengths at age from the NEFSC and MDMF surveys.
Figure C35. Male and female 3 year moving average L and A 50s from the MDMF survey.
Figure C36. Female Gulf of Maine winter flounder logistic length and age maturity curves estimated from GARM III (1982-2007, n = 12,108) and with all years combine from the MDMF spring survey.
Figures C37. Split VPA SSB, F, and recruitment assuming m=0.2 and m=0.3.
Figure C38. Base (top) and split (bottom) VPA residual pattern for all ages.
Figure C39. Gulf of Maine winter flounder Base VPA retrospective with \(m = 0.3 \).
Figure C40. Gulf of Maine winter flounder Base VPA relative difference retrospective with \(m=0.3 \).
Figure C41. Gulf of Maine winter flounder split VPA retrospective with m=0.3.
Figure C42. Gulf of Maine winter flounder split VPA relative difference retrospective with m=0.3.
Figure C43. Total catch (landings and discards, thousands of metric tons) and fishing mortality rate (F, ages 5-6) from the split and base VPA runs from GARM I, II, and III, and this assessment for Gulf of Maine winter flounder. The ASAP indices at age and multi runs area also shown.
Figure C44. Spawning stock biomass from the split and base VPA runs from GARM I, II, III, and this assessment for Gulf of Maine winter flounder. The ASAP indices at age and multi runs area also shown.
Figure C45. Estimated area swept Qs at age from the base VPA with m=0.3.
Figure C46. Estimated area swept Qs at age from the split VPA with m=0.3.
Figure C47. Relative retrospective pattern from ASAP indices at age run with a high effective sample size weight (ess 150) on the catch at age composition.
Figure C48. Relative retrospective pattern from the split ASAP indices at age run with a high effective sample size weight (ess 150) on the catch at age composition.
Figure C49. Estimated numbers at age from the ASAP indices at age run with a ESS weight of 50 on the catch at age composition.
Figures C50. Fit to catch at age composition with the ASAP indices at age run with a effective sample size weight of 150.
Figure C51. Fit to catch at age composition with the ASAP indices at age run with an effective sample size weight of 50.
Figure C52. Retrospective pattern from ASAP indices at age run with an effective sample size weight of 50 on the catch at age composition.
Figures C53. Relative retrospective pattern from ASAP indices at age run with an effective sample size weight of 50 on the catch at age composition.
Figures C54. Selectivity from ASAP indices at age run with an effective sample size weight of 50 on the catch at age composition.
Figure C55. Fit to catch at age composition with the ASAP multi-run with an effective sample size weight of 50.
Figure C56. Selectivity from ASAP multi run with an effective sample size weight of 50 on the catch at age composition.
Figure C57. Fit to aggregate indices from the ASAP multi run with an effective sample size weight of 50.
Figure C57. Cont.
Figures C58. Estimated numbers at age from the ASAP multi run with a ESS weight of 50 on the catch at age composition.
Figure C59. Retrospective pattern from ASAP multi run with an effective sample size weight of 50 on the catch at age composition.
Figures C60. Relative retrospective pattern from ASAP multi run with an effective sample size weight of 50 on the catch at age composition.
Figures C61. Comparison of different VPA and ASAP model runs for SSB, F and recruitment.
Figure C62. Estimated 4+ biomass and exploitable biomass from the preferred ASAP multi run.
Figures C63. Estimated fishing mortality and SSB with 80% confidence intervals from 1000 mcmc iterations for the preferred ASAP multi run.
Figure C64. Estimated fishing mortality and SSB from 1000 mcmc iterations for the preferred ASAP multi run for 2010.
Figure C65. Assumed catch (top), SSB (middle) and fishing mortality (bottom) for the final ASAP multi model, the final multi model with the PSE added to the catch, and the PSE subtracted from the catch. This analysis was done to address TOR 4.
Figure C66. Comparison of estimated selectivity used for the estimation of biological reference point for the split VPA, ASAP indices at age and multi models.
Figure C67. Yield per recruit analysis from the ASAP multi run.
Figure C68. Stock recruit plots from the split VPA and ASAP multi runs.
Figure C69. The estimated stock recruit curves from the split VPA and ASAP multi runs with a prior on steepness.
Figure C70. Estimated SSBmsy and Fmsy distribution from 1000 mcmc iterations for the preferred ASAP multi run with a prior on steepness.
Figure C71. Variation of MSY with SSBmsy estimates from 1000 mcmc iterations for the preferred ASAP multi run with a prior on steepness.
Figures C72. SSB, catch, and fishing mortality assuming catch is 230 mt (ACL) in 2011 and the Fmsy proxy of F40% = 0.43 from 2012 to 2020 from the split VPA.
Figures C73. SSB, catch, and fishing mortality assuming catch is 230 mt (ACL) in 2011 and the 75% of the Fmsy proxy of F40% = 0.32 from 2012 to 2020 from the split VPA.
Figures C74. SSB, catch, and fishing mortality assuming catch is 230 mt (ACL) in 2011 and the Fmsy proxy of F40% = 0.34 from 2012 to 2020 from the ASAP multi run.
Figure C75. SSB, catch, and fishing mortality assuming catch is 230 mt (ACL) in 2011 and the 75% of the Fmsy proxy of F40% = 0.26 from 2012 to 2020 from the ASAP multi run.
Figure C76. SSB, catch, and fishing mortality assuming catch is 230 mt (ACL) in 2011 and the stock recruit Fmsy = 0.57 from 2012 to 2020 from the ASAP multi run.
Figures C77. SSB, catch, and fishing mortality assuming catch is 230 mt (ACL) in 2011 and the 75% of the stock recruit Fmsy = 0.43 from 2012 to 2020 from the ASAP multi run.
Figure C78. Consequence of the split VPA model reflecting the true when the 75% of Fmsy catch from the ASAP multi model is taken.