APPENDIX B. CLASSICAL CHANGE POINT ANALYSIS

summary(model.oneslope) (Model 4)

Call:
```r
glm(formula = DaysSince2 ~ count, data = LW_00)
```

Deviance Residuals:
```
Min       1Q   Median       3Q      Max
-328.93  -112.88   -15.83    98.70   299.95
```

Coefficients:
```
           Estimate Std. Error t value Pr(>|t|)
(Intercept)  -3041.774    41.798   -72.77   <2e-16 ***
count        64.675      1.299    49.80   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```

Null deviance: 59213198 on 54 degrees of freedom
Residual deviance: 1238754 on 53 degrees of freedom
AIC: 713.31

summary(model.change) (Model 5)

Call:
```r
glm(formula = DaysSince2 ~ 1 + count:as.factor(Rule), data = LW_00)
```

Deviance Residuals:
```
Min       1Q   Median       3Q      Max
-258.13   -88.46   -29.35    72.82   306.03
```

Coefficients:
```
(Intercept)            -2998.680    45.336    -66.14   <2e-16 ***
count:as.factor(Rule)0    62.087     1.756     35.36   <2e-16 ***
count:as.factor(Rule)1    65.025     1.269     51.24   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```

Null deviance: 59213198 on 54 degrees of freedom
Residual deviance: 1140740 on 52 degrees of freedom
AIC: 710.78

AICc Comparison --- Confidence set for the best model

Method: raw sum of model probabilities

<table>
<thead>
<tr>
<th>K</th>
<th>AICc</th>
<th>Delta AICc</th>
<th>AICcWt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change After Rule</td>
<td>4</td>
<td>711.58</td>
<td>0.0</td>
</tr>
<tr>
<td>One Slope</td>
<td>3</td>
<td>713.78</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Conclusion – with an evidence ratio of 3:1, the change point is somewhat preferred, but the estimated difference in rates before and after the Rule (62 vs 65 days between) was small.