Transition Discard Rate: Adaptive Alpha Methodology

J. Michael Lanning, PhD
Discard Methodology Peer Review
2/22/2010
Adaptive Alpha

Pros / Cons

• Forecasting Model: Data Driven
• Initialization Method: No need to choose Alpha
 – Seed Rate and Alpha = 1
• Alpha is adjusted by prediction error
 – Alpha increases when error is high (rapidly changing or systematic under/over forecasting)
 – Alpha decreases when error is low (slowly changing)

\[TR_i = \alpha \cdot SR + (1 - \alpha) \cdot \frac{\sum_{i=0}^{I} d_i}{\sum_{i=0}^{I} kall_i}, \quad I = 1 \text{ to } I_{\max} \]

Where
- \(TR \) is the transition rate
- \(I \) is the number of observations
- \(\alpha \) is the exponential weight
- \(SR \) is the seed rate
- \(i \) is an observation
- \(d \) is the observed discard
- \(kall \) is the observed kept-all
- \(I_{\max} \) is the maximum number of observations
Adaptive Alpha: Observed YT

Cumulative Discard Ratio

I: Observations
Adaptive Alpha

- Error\(_i\) = (Current Cumulative Ratio – Forecasted Cumulative Ratio)

- SAD\(_i\) = Exponentially weighted error
 \[= \beta \times \text{Error}_i + (1 - \beta) \times \text{SAD}_{i-1}\] (where \(\beta = 0.2\))

- MAD\(_i\) = Exponentially weighted absolute error
 \[= \beta \times |\text{Error}_i| + (1 - \beta) \times \text{MAD}_{i-1}\] (where \(\beta = 0.2\))

- Alpha\(_i\) = \(|\text{SAD}_i / \text{MAD}_i|\)

- Forecast Cumulative Ratio\(_{i+1}\) = Forecast Cumulative Ratio\(_i\) + Alpha\(_i\) * Error\(_i\)
Adaptive Alpha: Observed YT
Adaptive Alpha Behavior

Cumulative Discards

Adaptive Alpha